Forced Spaser Oscillations
نویسندگان
چکیده
We study oscillations of a spaser driven by an external optical wave. When the frequency of the external field is shifted from the frequency of an autonomous spaser, the spaser exhibits stochastic oscillations at low field intensity. The plasmon oscillations lock to the frequency of the external field only when the field amplitude exceeds a threshold value. We find a region of external field amplitude and the frequency detuning (the Arnold tongue) for which the spaser becomes synchronized with the external wave. We obtain the conditions upon the amplitude and frequency of the external field (the curve of compensation) at which the spaser’s dipole moment oscillates with a phase shift of π relatively to the external wave. For these values of the amplitude and frequency, the loss in the metal nanoparticles within the spaser is exactly compensated for by the gain. It is expected that if these conditions are not satisfied, then due to loss or gain of energy, the amplitude of the wave travelling along the system of spasers either tends to the curve of compensation or leave the Arnold tongue. We also consider cooperative phenomena showing that in a chain of interacting spasers, depending on the values of the coupling constants, either all spasers oscillate in phase or a nonlinear autowave travels in the system. In the latter scenario, the traveling wave is harmonic, unlike excitations in other nonlinear systems. Due to the nonlinear nature of the system, any initial distribution of spaser states evolves into one of these steady states.
منابع مشابه
Forced synchronization of spaser by an external optical wave.
We demonstrate that when the frequency of the external field differs from the lasing frequency of an autonomous spaser, the spaser exhibits stochastic oscillations at low field intensity. The plasmon oscillations lock to the frequency of the external field only when the field amplitude exceeds a threshold value. We find a region of values of the external field amplitude and the frequency detuni...
متن کاملForced oscillations of a damped Korteweg-de Vries equation on a periodic domain
In this paper, we investigate a damped Korteweg-de Vries equation with forcing on a periodic domain $mathbb{T}=mathbb{R}/(2pimathbb{Z})$. We can obtain that if the forcing is periodic with small amplitude, then the solution becomes eventually time-periodic.
متن کاملChannel spaser: Coherent excitation of one-dimensional plasmons from quantum dots located along a linear channel
Recently, a new branch of quantum optics—quantum nanoplasmonics—has arisen.1,2 Advantageous plasmon properties such as small wavelength and a high-energy concentration open new perspectives for constructing nanodevices such as waveguides, cavities, and antennas. In this regard, studies of plasmons propagating along 1D objects such as wires,3 wedges,4,5 and channels6,7 are of great interest. Los...
متن کاملSpectral collapse in ensembles of metamolecules.
We report on the first direct experimental demonstration of a collective phenomenon in metamaterials: spectral line collapse with an increasing number of unit cell resonators (metamolecules). This effect, which is crucial for achieving a lasing spaser, a coherent source of optical radiation fuelled by coherent plasmonic oscillations in metamaterials, is linked to the suppression of radiation lo...
متن کاملMagneto-optical spaser.
We present an electrodynamical model of a quantum plasmonic device--the magneto-optical (MO) spaser. It is shown that a spherical gain nanoparticle coated with a metallic MO shell can operate as a spaser amplifying circularly polarized surface plasmons. The MO spaser may be used in design of an optical isolator in plasmonic transmission lines as well as in spaser spectrometry of chiral molecules.
متن کامل